GENERALIZATION OF THE BEAM APPROACH
TO PROBLEMS OF CRACK THEORY

A, M. Mikhailov

This note supplements a previous article [1] devoted to the problem of the motion of a crack along a
bar, where it was assumed that the behavior of the bar is quite accurately described by the Bernoulli-
Euler beam theory. Below(sectionl) the formulation of the problem is extended to the two-dimensional
case, i.e., to the case of crack propagation along the middle surface of a thin plate. This kind of problem
can be reproduced experimentally using layered or laminated materials. In section 2 the beam formulation
is generalized in another direction: in describing the behavior of a bar the effect of the shearing force on
deflection and, moreover, the inertia of rotation of cross sections of the bar are taken into account, Con-
sideration of these factors ensures the existence of a limiting crack propagation velocity, The equations
presented were obtained by a variational method from the principle of least action; the calculations have
been omitted because of their similarity to those in [1] and because, though clumsy, they are relatively ele-
mentary.

1. We consider the motion of a crack along the middle surface of a thin plate of thickness 2H, whose
material possesses density p and elastic constants E (Young's modulus) and v (Poisson's ratio), while the
resistance to crack propagation is characterized by the surface energy density T. Let the crack lie in the
xy-plane and at time t occupy a region D(t) bounded by the piecewise-smooth closed contour C(t). We de-
note the normal displacement of the neutral surface of one of the halves of the plate by u(x, t); we assume
that the plate is loaded by an external force of density p(x, y, t) piecewise~continuous in D + C. Conditions
of rigid restraint are assumed on the contour C(t) (n is the normal to the contour)
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The expressions for the kinetic and potential energies take the form
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where A is a two~dimensional Laplacian,

The first integral in II is equal to the flexural energy [2], the second to the work done on creating a
new surface, while the third is the potential of the external forces. From the condition of stationarity of the
action integral with conditions (1.1) at the moving boundary C(t) of the three-dimensional regiont € [t,, t,],
(x, y) € D(t) we obtain the following problem: we are required to find a function, continuous with partial
derivatives up to second order with respect to t and up to fourth order with respect to x and y, and a con-
tour C(t) such that with
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conditions (1.1) are satisfied and at t = 0 certain initial data compatible with (1.1) and (1.3). If we assume
loading by concentrated forces and moments, it is sufficient to require only the continuity of the displace-
ment with first partial derivatives. Conditions (1,1) and (1.3) ensure the smoothness of the contour C(t):
from the expression for the shearing force on the fixed contour (Eq. (12.9) from [2])
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it follows that, as a consequence of {1.3), at corner points there would be a concentrated reaction; this is
impossible for a restrained, slightly flexed plate.

As an example, we consider the case of propagation of a circular crack, whose surface is free of load
everywhere except at the center, while at the center the distance 2h between opposite edges increases at the
constant rate 2U. Making the substitution

w(z, g, y=Utf(E), Z:—allt—, rio= 2t g2

in (1.1)~(1.3) and solving the ordinary differential equation obtained, we find equations for the radius of the
crack R and the displacement u:
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In these equations si, ci denote the integral sine and cosine.

For the case of infinitely slow motion by passing to the limit as A—0 we obtain the radius of the
equilibrium crack

Rzz 2h/A1

2. Let us formulate the problem of the development of a crack along a bar using Timoshenko's beam
approximation [3] to describe the motion of the bar, i.e., taking into account the shear potential energy and
the kinetic energy of rotational motion of cross sections of the bar. Let the axis of abscissas be directed
along the bar; b and H are the transverse dimensions of one half of the bar, and I = bH3/12 is the static
moment of inertia of the cross section of that half, The crack is located on the interval 0 = x =< [(t). At
x = 0 we assign a transverse load F(t) and bending moment M(t) as functions of time, while at x = [(t) the
beam is rigidly clamped. We represent the slope of the neutral axis du/9x as the sum of a rotation w and
shear y and write the kinetic and potential energies:
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We find the equations of motion and the necessary boundary conditions from the condition of station-
arity of the action integral for conditions of rigid restraint at the end of the crack:

u(l)=0,0 (@) =0 (2.1)
We present the result:
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Equations (2.2) coincide with the equations for [[1, [m] from [3]. The first and second of these equa-
tions express Newton's second law for the translational and rotational motions of an element of the bar, By
means of differentiations we can eliminate w from (2.2) and obtain a fourth-order equation for u(x, t); how-
ever, this will not work with the boundary conditions. Since the motion of the crack is accompanied by the
simultaneous motion of two beams, in order to exclude the possibility of overlapping of the edges of the
crack it is necessary to require that the displacement does not change sign at 0 =x = 1. From (2.4) there
follows the impossibility of propagation of the crack at a velocity exceeding the longitudinal wave velocity.
When the Bernoulli-Euler approximation is employed, the velocity of the crack may be arbitrarily large

[1].
Consider the steady cleaving action of a wedge of thickness 2h moving at velocity V. In this case

u (z, t) = u (x — Vi),
o (z, ) =0 (& —VE), difdt=V at =z =1Vt
u=h, 0w/dz=0, at z=Vt-+ 1

conditions (2.1) and (2.4) are satisfied. After substituting ¥ =x—Vt we easily find u(y), w(x);
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Using (2.4), we obtain a relation between the cleavage rate and the length of the crack in front of the
wedge

[sin ol — (1 — B ol cosal} (1 —BeY)s _ hea'B? (2.5)
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If the shear stiffness is infinte (8= 0) and the propagation velocity is small (3, « 1), so that rota-
tional inertia does not play an important part, then o= VAand(2.5) gives the solution of the wedge problem
in the Bernoulli~Euler approximation

Vi, 1 Vi, 1 1 (VI 3h (2.6)
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where l* is the equilibrium length of the crack in the Bernoulli-Euler approximation [see [1], Eq. (2.5)].

In this case I /[ is determined by only one dimensionless parameter VI, /a. Relation (2.6) is shown
in Fig. 1. The dashed lines represent solutions for which for at least one pointy lying between 0 and/ ,u(x) < 0
and which, consequently, cannot be used to describe the motion of the crack. Unfortunately, in [1] the multi-
valuedness of the length in the case of steady wedge action was overlooked and only the graph passing through
/1, = 1 was presented.

Let us now consider slow motions, assuming that the bar has a finite shear stiffness. As before, we
take « %V/a; however, B, 0. Replacing the trigonometric functions in (2.5) by segments of a Taylor series
and neglecting high-order infinitesimals as V—0, we obtain an equation for the length of the crack [, in
front of the stationary wedge:
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Dividing (2.7) by LS, we obtain the relationship between [ /]  2nd a/c,l . This relationship, which
makes it possible to determine when the shear potential energy can be disregarded, is shown in Fig, 2, As
a/c)lx — = the length of the crack tends to zero.

For large cleavage rates, we find that motions with velocities V > ¢, are impossible, since the left-
hand side of (2.5) becomes purely imaginary at 8, > 1. Investigation shows that for each velocity V < c,
there is an infinite set of crack lengths in front of the wedge, so that the graph of [ (V) has an infinite set of
branches, If hci/a?A =(1 —e%/c%)‘/%, all the branches lie on the interval 0 = V = ¢, and pass through the
point I =0, V = c,. However, if hed/a?A > (1 —c}/ChHY2, then all the branches are cut off at V < ¢,, and the
higher the branch, the more closely it approaches the point [ =0, V = c,.

In the case considered the choice of a particular crack length is determined by the initial conditions.

1t should not be concluded from this example that c, in the Timoshenko approximation is the limiting
velocity for motion of the crack under any conditions., To convince oneself of this it is sufficient to consider
the steady-state propagation of a crack activated by a concentrated moment exceeding v 2TbEI,
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